30 {2,3,5} /|\ /|\ / | \ / | \ 6 10 15 {2,3} {2,5} {3,5} |\/ \/| |\/ \/| |/\ /\| |/\ /\| 2 3 5 {2} {3} {5} \ | / \ | / \|/ \|/ 1 ∅
要素ごとに書き下すと下のようになる.
f(n) = { q | q は n の素因数 } = { 2, 3, 5 } ∩ { q | q は n の約数 }
P({2,3,5}) から D30 への順序同形写像なら, 上の f の逆写像
f(1) = ∅, f(2) = {2}, f(3) = {3}, f(5) = {5}, f(6) = {2,3}, f(10) = {2,5}, f(15) = {3,5}, f(30) = {2,3,5} .
要素ごとに書き下すと下のようになる.
f −1(A)= ∏
n∊An
f −1(∅) = 1, f −1({2}) = 2, f −1({3}) = 3, f −1({5}) = 5, f −1({2,3}) = 6, f −1({2,5}) = 10, f −1({3,5}) = 15, f −1({2,3,5}) = 30 .
例えば, g(m,n) = 2m 5n100 (2,2) / \ / \ 20 50 (1,2) (2,1) / \ / \ / \ / \ 4 10 25 (0,2) (1,1) (2,0) \ / \ / \ / \ / 2 5 (0,1) (1,0) \ / \ / 1 (0,0)
g(0,0) | = | 1, | ||||||||
g(1,0) | = | 2, | g(0,1) | = | 5, | |||||
g(2,0) | = | 4, | g(1,1) | = | 10, | g(0,2) | = | 25, | ||
g(2,1) | = | 20, | g(1,2) | = | 50, | |||||
g(2,2) | = | 100 . |
g(0,0) | = | 1, | ||||||||
g(1,0) | = | 5, | g(0,1) | = | 2, | |||||
g(2,0) | = | 25, | g(1,1) | = | 10, | g(0,2) | = | 4, | ||
g(2,1) | = | 50, | g(1,2) | = | 20, | |||||
g(2,2) | = | 100 . |